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Necessary and sufficienll conditions for the controllability of nonqinear dynamical systems are found. These conditions reduce 
to the verification of the existence of solutions of partial differential equations of Lyapunov type in stability theory and Levi--Civita 
type in the theory of invariant manifolds. This governs their utility in stabilization problems and provides a proof of a general 
theorem relating controllability properties and stabilizability, and extends a previously known theorem for linear systems to the 
non-linear case. The results are used to investigate the control and stabilizability of the rotational motion of a rigid body by means 
of a single jet engine. 

1. C O N T R O L L A B I L I T Y  C R I T E R I A  

We shall study control systems governed by ordinary differential equations 

k = f ( x ,  u) (1.1) 

where x is the phase vector and u is the control vector. System (1.1) is considered during the time interval 
T = [0, o.) on a domain D that is assumed to be a connected n-dimensional Cr-manifold (r I> 2). 
Admissible controls are bounded measurable functions of time u = u(t) taking values in some set U _ 
R m, and their set is denoted by f2. We shah also assume that the function f(x, u) is ( r -  1) times 
continuously differentiable with respect to x and u on D x U. 

We will formulate the controllability criteria in terms of manifolds oriented with respect to the system, 
and introduced by lthe following defnit ion [1]. 

Definition 1. A manifold K C D is said to be oriented with respect to system (1.1) in the domain D 
if it coincides with i[ts positive orbit (K = Or+K) or negative orbit (K = Or-K). The positive orbit K = 
Or+K of the set K is the set of points reachable from the set K along trajectories of system (1.1), and 
the negative orbit Or-K is the set of those points from which the set K can be reached. 

The investigation of oriented manifolds is based on the properties of orbits which in the main are 
governed by the properties of trajectories. We will formulate some properties of the trajectories of system 
(1.1) which will be required below. Suppose u = u(t) e f2 and that the function x (t,x~ u) is a solution 
of the Cauchy problem for system (1.1) with initial eonditionx(0) = x0 and control u(t). We shall consider 
the transformation Ftu : D ---> D acting according to the law F~ : Xo ~ x(t, Xo, u). 

One can show that F t is a diffeomorphism of class C~ -1 (property A). 
In many situations in control theory it is sufficient to consider a more restricted set of admissible 

controls introduced in the following manner. Let Vbe a denumerable subset of the set U that is dense 
throughout U. We denote by H the set of piecewise-constant controls taking values in V and switching 
at rational instants of time. Obviously H C ft. It can be shown that H is a denumerable set. 

The following lemma establishes a property of trajectories of system (1.1) which is important when 
investigating oriented manifolds, which applies when the admissible controls are functions from the 
set H. 

Lemma 1. Suppose sup,, ~ u, u ~ D II f(x, u) II ~ 1 and X 1 = ftulX O. 
Then for any neighbourhood O of the point x0 one can findy ~ O, h e H such that f~ly = Xl. 
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T h e o r e m  1. System (1.1) is controllable if and only if there are no manifolds N oriented with respect 
to the system with a smooth boundary such that N ~ ~ ,  D. 

Necessity is proved by assuming the contrary and using the definition of the controllability property 
in terms of orbits, which reduces to the fact that Vx ~ D Or÷x = D. 

Sufficiency is proved in two stages, again assuming the contrary. We shall suppose that unlike the 
assertion of the theorem, system (1.1) is not controllable, and we shall first show that this reduces to 
the existence in the domain D of an oriented manifold. We will then show the existence of an oriented 
manifold with smooth boundary, which completes the proof of the theorem. 

By the non-controllability assumption for the system a pointx exists in the domain D such that Or÷x 

o~Dm ~ri~n%t h .~Ub~otSn pf " O r ~  Wee~h~.~s~meset e 7t~Ws~tho~SaC~t ~ ~ ~ f a D r e ~ "  rth_oUt~mbOt~dla~s 

of D is non-empty and contains, for example, arcs of the trajectories of system (1.1) corresponding to 
u = const. I fp  = 0 then Or÷x = {x} is a 0-dimensional manifold oriented with respect to system (1.1), 
and the theorem is proved. 

Below we shall assume that 0 < p ~< n. Note that by virtue of property A the sets F,t, y0 for t I> 0, 
u e f~ are p-dimensional cr-Lmanifolds without a boundary. 

We denote by B0 the denumerable base of the topology in 70 by D, and by Q+ the set of rational 
numbers on the semi-axis [0, oo). We consider the set B = {F~ b0: b 0 ~ B0, h ~ H, t ~ Q+}. The set B 
is denumerable because it is isomorphic to the denumerable set B0 x Q x H. 

It can be shown that B is a denumerable base for some topology for the set Or+T0, and that this 
topology is Hausdorff. 

We shall first establish that Or+Y0 = ot~nb. Supposeyl • Or+y0 and ul • ~, tl 1> 0,y0 • T0 are such thaty 1 = 
t ti F',,~y o. By Lemma 2 neighbourhoods 0 C Y0, z0 ~ 0, h e H exist such thatyl = F,','~0. But then, because of the density 

+ + of Q in [0, **) and the absolute continuity of the Lebesgue integral, we find a b ~ B such thatyl e b. Thus Or ¥0 
C U~Bb. The opposite inclusion follows from the definition of the set B. 

It remains to show that the intersection of any two sets in B is the union of some sets in B, and to do this we 
show that Vy ~ I~ = bl N b 2 (bl, b 2 ¢ B, I~ * 0 )  3 b3 e B :y e b 3 C [3. We represent bl and b2 in the form b i = F[it~bio 
(i = 1, 2); t i ~ Q+, h i ~ H, b 0 ~ B o. By propertyA I~o = (~h~)-ll 3 is an open subset ofyo andy 0 = (~h~)-ly e ~ C 
bg Because Bo is a base of the topology of 70, we find a b~ ~ Bo such that yo e bo c 130, but theny e b3 = ~b~  C 
I~. The set B is thus a denumerable base for some topology for the set Or+yo . 

We shall show that this topology is a Hausdorff topology. Indeed, supposeyl, Y2 ¢ Or+yo (Yl *Y2) andYi ~ bi 
B. Because D is a Hausdorff space, neighbourhoods O1 and O2 of the pointsyl andy2 exist such that O1 ~ 02 = 
0 .  We consider the set 0 i f3 b i. This is an open set in the topology specified on Or+yo by the base B. This means 
~l i ~ B: Yi ~ Bi C 0 i f')b exist. Then, obviously, ~1 ~ ~2 C 0 1  I") 0 2 = ~ .  

We take as the B 0 the coordinate neighbourhoods of some atlasA0 = {(b0, go)} of the cr-Lmanifold 
t t 1 + r l  + Yo. Then the collectionA = {(F~bo, go(Fh)-  ): (bo, qo) ~Ao, h ~ H, t, ~ Q } is a C - -atlas on Or Y0. To 

show this it is sufficient.just to verify the consistency of the charts of the atlasA. 
L e t  bi = F~b~  gi = g~(F~) -1, (b, gi) ~ A (i = 1, 2), bl > b2 ~ 0 .  The set b 1 ("1 b 2 is a p-dimensional 

1 t -1  t 2 - R . .  submanifold of D. We define the transition map F: Re ---> R e by ~y = g6(F~[) F~2(g2o) ty, y ~ From 
r l  +go the properties of A the map • is a C - -diffeomorphism. It is obvious that the map id" Or ---> D is 

an embedding of Or+g0 in D, and the set Or+g0 is an oriented manifold of system (1.1). 
We will use the manifold Or+y0 to construct an oriented manifold N with smooth boundary. As a 

preliminary we note that we can assume the set U, V~ = {f(x, u): u e U} to be compact. If this is not 
true for the original system (1.1), then we can change to the system k = ~0(x, u), q~(x, u) = f(x, u) x 
(1 + f2 (X, u)) -172 which is equivalent from the point of view of controllability, and where the set V~ is 
bounded with compact closure Ix. We change to a new parameter (to replace u) on the set Vx and obtain 
a compact bounded set U(x)  which will in general depend on the point x. 

We shall distinguish between the two cases when Or+y0 is manifold without an edge, and when it has 
an edge. In the first case its dimension is no greater than n - 1, and all its points are boundary points, 
i.e. the boundary is the manifold, which proves the theorem. In the second case a boundary point ~ 
Or+y0 exists such that the set Or+y0 is situated in some neighbourhood of the point • on one side of 

point, then instead of Or ~t 0 we consider the plane II passing through this point. (If there is no such + + 
Or-70.) We consider the sphere Bs bounded by a sphere So C Or Y0 of sufficiently small radius, passing 
through the point ~ and tangential to the plane II. If the point ~ is a corner point, we consider a point 

+ 
x0 ~ Or Y0 that is sufficiently close to it and passing through it a sphere So such that all vectorsf(x0, u) 
are directed to one side (given by the centre of the sphere) of the tangent plane to the sphere So at the 
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point x0. We shall sl~ow that the boundary Or + B~ ( O r B s ,  if Or+T0 is locally concave at the point ~) is 
a manifold. 

For the given choice of sphere So the boundary of Or + Bs is, generally speaking, multiply-connected, 
and is the image tuader the transformation F, t, of several pieces of  the sphere So. Using the piece 5o 
containing the point x0(~ ) as an example, we shall show that the connected components of the boundary 
of Or + Bs are manifolds. The set 5O is either a manifold, or coincides with the point x0. In the latter 
case, instead of  the', sphere So we take the part of the sphere cut-off by the plane II, attached at the 
points of intersection to the plane II. Then this component of  the boundary Or + Bs will also be the 
image of a manifold, which as before we denote by 50. 

We note the following property of the boundary points: their pre-images are also boundary points. 
This follows becau,;e of the continuous dependence of the solution on the initial conditions and the 
image parameter. (Under the transformation F t an internal point becomes an internal point of Or + 
Bs. ) Using the compactness property of the sets U and Vx, we leave at the boundary points only those 
veetorsf(x, u), u e U' which take boundary points into boundary points. Considering the system ~ = 
f(x,  u), u ~ U', x(O) ~ 5O we find that the connected component of the boundary of the set Or + Bs is an 
orbit of the manifo]M 5O for the given system and, as previously proved, is a manifold, as is Or+T0 . The 
theorem is proved. 

2. E Q U A T I O N S  F O R  O R I E N T E D  M A N I F O L D S  

The orientedness condition means that Vu ~ U the velocity vectorsf(x, u) at the boundary points are 
directed into the exterior of  the manifold i fK  = Or-K,  or into the interior i fK  = Or + K. Suppose the 
dimension of the manifold is s and its boundary is given locally by the equations V/(x) = 0 (V/e R1), 
with the tangent plane at the point Xo given by the equations (x - x0, VVi(x0)) = 0 (i = 1 . . . . .  n - s). 
The interior is given by one of the vectors Vl~/(x0), say VVl(x0); here the equations V2(x) = 0 . . . . .  
Vn - s(x) = 0 must be satisfied. It then follows from the orientgdness condition that Vu ~ U (f(x0, u), 
VV/(xo) ~> 0(f(xo, u), VV/(x0) ) = 0 (i = 2 , . . . ,  n - s), or (f(x0, u), VV/(xo) ) ~< 0, (f(x0, u), VV/(x0) ) = 0. 
These relations can be written in the form of a system of equalities if we introduce the sign-constant 
function G(x, u) and the continuous functions kq(x, u) / j  = 1 . . . .  , n - s in the domain D x U (dropping 
the subscript zero from Xo because of its arbitrariness) 

n - s  

( f (x ,u ) ,  VVi(x)) = ~ ~,ij(x,u)Vj(x)-t-Gi(x,u) Vu E U 
j=l 

(2.1) 
Gj(x ,u)=G(x ,u) ,  G 2 . . . . .  G n _ s = 0 ;  i = 1  . . . . .  n - s .  

• These equations were obtained as a consequence of the existence of an oriented manifold for system 
(1.1). Conversely, if one can find a sign-constant function G(x, ) and continuous functions ~qj(x, u)  
such that the system of equations (2.1) has a solution l/ l(X), . ,  u ,  . Vn -s(x), then system (1.1) has an 
oriented manifold whose boundary is given by the equations 7/(x) = 0 (i = 1 . . . . .  n - s). Equations 
(2.1) are obviously satisfied by the function Vk(x) -- 0 if we put ~q~(x, u) = O, Gk(X, u)  =-- O. Hence 
one can immediatelIy cover all cases if system (2.1) is considered for s = 1. An oriented manifold of 
incomplete dimensionality (dim K = s < n) corresponds to the case when a given number of functions 
l//(x) vanish. Using this we obtain another theorem from Theorem 1. 

Theorem 2. System (1.1) is controllable if and only if system (2.1) for s = 1 has no solutions 
Vl(x), . . . , Vn - l(x) in D defined by sign-varying functions, for any continuous functions 7qj(x, u)  and 
sign-constant functions G(x, u ). 

Theorem 2 reduces the problem of controlling system (1.1) to that of  the existence of a solution of 
the system of differential equations (2.1). The latter problem is made more complicated by the fact 
that these equations contain a controlling parameter u which can take any values on the set U. This 
difficulty can be overcome using a technique similar to the introduction of base systems [2] for 
constructing invariant manifolds, the essence of which has to do with the fact that for every pointx e D  
the vector f(x, u) can be represented in the form of a linear combination of vector fieldsfl(x) . . . . .  fk(X) 

f ( x ,  u) = Oq (x, u ) f  l (X)+... +0~ I(x, u ) f  t (x)  + 
(2.2) 

+t~t+l(X,U)fl+l(X)+....+O~k(X,U)fk(X) ~'(X,U) ~ D X  U 
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where o~+l(x, u) I> 0 , . . . ,  Ok(X, u) ~> 0, and the coefficients oq(x, u ) , . . . ,  oq(x, u) take both positive 
and negative values. The functions 0q(x, u), 3](x) (i = 1 . . . .  , k) preserve the differential properties of 
the function f(x, u). 

Theorem 3. Suppose system (1.1) is controllable, then the system of equations 

n - I  (i,(x),W,(x)): o,,(x) (2.3) 

(i = 1 ..... k;j = 1 ..... n- l )  

where G~I = G ~ ( x )  ( 6  = l + 1, . . . , k ) ,  and GaS = 0 for the other index values, has no solutions 
Va(x), • • •, Vn-l(X) that are sign-varying functions in the domain D, for any continuous functions Xij~(x) 
and sign-constant functions G~(x). 

The proof is performed by assuming the contrary. Suppose a solution Vl(x) . . . .  , V,_x(x) of 
system (2.3) exists for continuous functions X/j~(x) and sign-constant functions G~(x). Then this solution 
will also be a solution of system (2.1) with continuous functions ~i(x, u) = Ek~=ma~(x, u)~i~(x) and sign- 
constant functions G(x, u) = xk=l+lCq(X, u ) G i ( x ) ,  and by Theorem 2 system (1.1) is not controllable, 
which contradicts the assertion of the present theorem. 

To obtain sufficient conditions it is necessary to investigate the coefficients oq(x, u) for (x, u) e D x 
U and to study their influence on the behaviour of the trajectories of system (1.1). 

3. LOCAL C O N T R O L L A B I L I T Y  

In a local formulation the domain D is taken to be some neighbourhood of zero Do and it is assumed 
that the domain U contains the point u = 0, and that the functionf(x, u) is such that f(0, 0) = 0. The 
property of local controllability is understood in the following way. 

Definition 2. System (1.1) is locally controllable (in a neighbourhood of zero) if there exists a 
neighbourhood of zero D01 C Do such that Yx0, xa e D0x a time tl ~ T and an admissible control u(t) 
exist such that the corresponding solution x(t) of system (1.1) satisfies the conditions x(0) = x0, X(tl) = 
xl, x(t) ~ Do when 0 ~< t ~< q. 

Methods developed for stability theory turn out to be useful when investigating local controllability 
which use Theorem 3. As in stability theory, a function is called sign-constant or sign-varying if a 
neighbourbood of zero exists in which it preserves its sign or has varying sign, respectively. Using 
Definition 2 we conclude that non-controllability (in a local sense) can only be the result of the existence 
of oriented manifolds passing through the origin of coordinates, i.e. the functions Va(x),.. •, Vn_l(x) 
defining their boundaries should be sign-varying. Theorem 3 can be reformulated as follows. 

Theorem 4. Suppose system (1.1) is locally controllable. Then no sign-varying functions Vl(x ) , . . . ,  
Vn_l(x) exist that are solutions of system (2.3) for continuous functions 7qjl~(x ) and sign-constant functions 

To investigate the problem of existence for system (2.3) we expand the functions~(x) in series in the 
neighbourhood of zero, and represent the functions X/.~(x) and solutions V~(x) in series with 
undetermined coefficients from those equations in (2.3) wi~ere G ~  = 0. The remaining equations in 
(2.3) determine the sign-constant functions G~(x). These equations must be supplemented with the sign- 
constancy condition for the functions G[~, and this results in a complete set of relations whose analysis 
solves the problem of the existence of the functions Vx(x) , . . . ,  V~_l(X). Additional information about 
the undetermined coefficients gives a procedure for supplementing the system obtained with Jacobi 
brackets from Eqs (2.3). As in stability theory, in many eases the local controllability problem can be 
solved just by looking at the expansion to the second order of smallness. 

4. STABILIZABILITY OF N O N - L I N E A R  SYSTEMS 

When considering stabilization problems we will take Eqs (1.1) to be the equations of the perturbed 
motion and we will retain the assumptions made about D U,f(x, u) for the local controllability problem. 
The stabilization problem is the problem of finding a control u = u(x(t)) which ensures the asymptotic 
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stability of the zero solution of the system :~ = f(x, u(x)). If such a control exists, then system (1.1) is 
said to be stabilizable. Note that the control is sought in the form of a function u(x(t)), and not in the 
more general form u(x(t), t), in order that we can use the well-developed techniques of the theory of 
controlling and stabilizing autonomous systems. For the admissible controls we assume [3] that the 
functions u(x) are continuously differentiable and that u(0) = 0. 

To prove a theorem on stabilizability the following auxiliary result is requirod. 

Lemma 2. System (2.1) does not have a solution V/(x) (i -- 1 , . . . ,  n - s) expressed in terms of sign- 
varying functions, Vu e U if and only if this solution does not exist for some admissible control u(x). 

The sufficiency is obvious. We will prove necessity by assuming the opposite. Suppose that for some admissible 
control u(x) one can find continuous functions ~,~(x) and a positively-constant function G~(x) such that the sign- 
varying functions V~I~) (i = 1 . . . . .  n - s) are a solution of the system 

( f (x ,u (x ) ) ,VV iU(x) )  = ~ .  ~,~j (x)V~(x)+GU(x)  
j=l 

(4.1) 
G ~  ( x )  = G u ( x ) ,  G 2 . . . . .  G,,_.,. = O, i = 1 . . . . .  n - s 

Then for any arbitrarily chosen admissible control u(x) a function V(x) exists which gives a solution V1 = V(x), 
V2 = . . .  = V~ _ 1 = 0 of system (4.1) such that for aUx and u in a sufficiently small neighbourhood D0 x Uof  the 
point (0, 0) the vectors f(x, u) for u e U are situated on one side of the tangent plane to the surface V(x) = 0 at 
the point x e Do. If such a surface does not exist, then by the smoothness of the vector fieldf(x, u) one could choose 
a continuously-differentiable function un(x) in such a way that for un(x) no surface exists with respect to which the 
vectors f(x, u) lie only on one side, i.e. Eqs (4.1) would not have a solution for the given un(x ). In view of this the 
function V(x) determines a solution of system (2.1) defined in some neighbourhood D O for all u e U, which 
contradicts the condition and proves the lemma. 

Theorem 4, with the Krasovskii instability theorem [4] and the Barbashin-Krasovskii theorem on 
asymptotic stabiliqr [5], enable us to prove the following result for linear systems. 

Theorem 5. If system (1.1) is locally controllable, it is stabilizable. 

Proof. According to Theorem 4, the local controllability means that for any continuous functions X/j 
(x, u) and sign-con'stant functions Gi(x , u) there is no solution of system of equations (2.1) expressible 
in terms of sign-va~:ying functions Vl(X), • • •, V, -s(x) Vu(x) e U. Then by Lemma 2 a control u = u(x) 
exists such that the system of equations for u = u(x) has no solution. In particular, for i = 1 the equation 

( f (x ,  tc (x)), VV 1 (x)) = ~.(x, u(x))V 1 (x) + G(x, u(x)) 

has no solution expressible in terms of  a sign-varying function, for any continuous function ~(x, u(x)) 
and sign-coustant lhnction G(x, u(x)), which includes functions X(x, u(x)) such that 7~ > 0. From this 
we conclude from the Krasovskii instability theorem [4] that the zero solution is not unstable, i.e. it is 
stable. This means a positive-definite Lyapunov function exists with a negatively constant derivative. 

By the Barbashin-Krasovskii theorem on asymptotic stability [5] the zero solution is not just stable, 
but also asymptotically stable, because for the chosen control no whole semi-trajectories exist passing 
through zero (including the set of trajectories on which the derivative of the Lyapunov function vanishes). 
This follows from the fact that the trajectories passing through zero are given by the vanishing of the 
sign-varying functions Vl(X) . . . . .  V,_l(x) which are the solution of system (2.1) when u = u(x), G(x, 
u(x)) = 0 and some continuous functions kii(x, u(x)), which cannot be true by the condition of the 
theorem. The theorem is proved. 

5. C O N T R O L  OF A R O T A T I N G  R I G I D  BODY 

Many problems on the motion of  a rigid body about its centre of mass under the influence of a thrust 
are studied by using as a model an absolutely rigid body with no mass variation. The equations of motion 
have the form 

tJ)  I =alO)2t.O 3 +O~lu (1 2 3) (5.1) 
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where al = ( h 2  -a3)[al,  a l  = e l / h i  (1 2 3),A1,A2,A 3 are the principal central moments of inertia of 
the body, 0)1, 0)2, or3 are projections of the angular velocity vector 0) onto the principal central axes, 
e = (el, e2, e3) is the unit vector directed along the thrust, and u is the control which describes the 
magnitude of  the thrust. 

We will investigate, using Theorem 3.5, the controllability and stabilizability of system (5.1). System 
(5.1) has the obvious representation 0~ = Ufl(0)) + f2(0)) which we shall use to obtain Eqs (2.3). 

We begin the investigation of system (2.3) with the case V1 = V, V2 = 0. We have 

Li =5tpI +~2P2+Ot3P3-)~IV=O, p~ =OV/~0) I (1 2 3) 

L2 = a10)20)3Pl + a20)30)lp 2 + a30)10)2p 3 - ~.2 V - G = 0 
(5.2) 

We complete system (5.2) with an equation obtained from the vanishing of the Jacobi bracket of the 
operators L1 and L2 which is calculated using the equalities L1 = 0. L2 = 0 

L 3 = [ L I , L 2 ]  = a1(520)3 + 530)2)P l  + a 2 ( 5 3 0 )  1 + 

(5.3) 
+~10)3 )P2 + a3 (510)2 + ~20)1 )P3 - •3 V - G I = 0 

In Eqs (5.2) and (5.3) ~.1, L2, L3, G, G1 are functions of the variables 0)1, 0)2, 0~. The determinant of 
system (5.2), (5.3), considered as a system of linear algebraic equations for Pl, P2, P3 is equ~  to 

A = a l a 2 a  3 (~20)3 - ~30)2 ) 0)2 + O~2a3al (ot30), - 

--510)3 )0)2 + O~3ala2 (510)2 _ a20)1 )0)~ (5.4) 

If A # 0, the solution of system (5.2), (5.3) has the form [2] V = c exp V(0)1, 0)2. or3) and is not a sign- 
varying function. If A = 0, the manifold defined by this equation is two-dimensional, and an oriented 
manifold of full dimension with boundary V = 0 does not exist. Thus the conditions of Theorem 3 are 
satisfied in this case. 

We now consider the case V1 = V, 112 = IV. System (2.3) takes the form 

LI =O~IPI +52P2+O~3P3--~'IV--~'I2W=O, Pl =OV/O0)l (I 2 3) 

/-2 = a10)2~3Pl  + a20)30)1 P2 + a30)10)2P3 7- ~'21VI - ~'22 w - G = 0 

L4 = 5 1 q l  + 5 2 q 2 + a 3 q 3 - ~ ' 4 1 V - ~ ' 4 2  w = 0 ,  ql =OWIO0)I (1 2 3) 

L 5 = al0)20)3q I + a20)30)lq 2 + a30)10)2q 3 - ~,siV - ~.52 w = 0 

(5.5) 

Completing this system with the equations L3 = ILl, L2] = 0, L 6 = [/_,4, Ls] = 0 and considering the 
resulting system L i = 0 (i = 1 . . . .  ,6)  as a system of linear algebraic equations inPi, qi (i  = 1, 2, 3), we 
find that its determinant is equal to A 2. As before, we conclude that the conditions of Theorem 3 are 
satisfied if A # 0. To complete the analysis we need to check whether the set given by condition A = 0 
contains an invariant manifold common to the base systems 

~1 = 51 ,  t-02 = 5 2 ,  ~ 3  = 53  (5.6) 

6)1 = al0)20)3, 6)2 = a20)30)1, 6)3 = a30)10)2 (5.7) 

We begin the investigation with system (5.6). We compute the derivatives of A using system (5.6), 
having first transformed the determinant (5.4). We find that 

A = 52530)1n  I + 53510)2/12 + 51Et20)3n3 

/~(5.6) = -2(51Sl0)20)3 + Ct2s20)3(1)1 + 53s30)10)2 ) 

A(5.6) = 2(0~253s10)1 + 530~1s20)2 + 0~1G~2S30)3 ) 

(5.8) 
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where n I = al(a3co:~ - a2c02), Sl 2 2 = al(a3co2_azCO3) (1 2 3). 
By the method of invariant relations [2] an invariant manifold of system (5.6) contained in the set 

specified by condition A = 0 is found by solving the system of equations obtained by the vanishing of 
the derivatives A(5, 6) and :~(5, 6)- This system admits of two classes of solution 

co I=O whenot I = 0 ( 1  23) (5.9) 

cqto 3 - a3o~t = 0 when s2 = 0 (1 2 3) (5.10) 

To establish this :fact it is convenient to change to the variablesx = to2/tol,y = tt~3/oh. Then the system 
takes the form 

0~30~1S2X + 0tl0t2s3Y = --0~2~3S I 

O~lslxy + Ot2s2y + Ot3s3x = 0 (5.11) 

0t20~3/~1 +Ot30~lX/12 +Otl0t2Y /~3 = 0  

where nl = a l ( a ~ ' : -  a2Y), n2 = a2(aly 2 - a3),/;3 = a3(a2 - a:c2) • 
From the first two equations in (5.11) we find the values o fx  andy  and substitute them into the last 

equation, using the equalities sa + s2 + s3 = 0, ~1 + ~2 + ~3 = 0. 
We now consider whether the base system (5.7) has solutions (5.9) and (5.10). Substituting solution 

(5.9) into Eqs (5.71} we find that col= 0 is an invariant relation of system (5.7), given the condition aa 
-- 0 or when we have the additional relation ~ = 0. In order for ~ = 0 to be an invariant relation of 
system (5.6) it is necessary for the additional condition o-2 = 0 to be satisfied, which is verified by direct 
substitution into (5.6). To verify that tO = tx l~  - o~30~1 = 0 is an invariant relation of system (5.7), using 
s2 = 0 we find q~ts.7~ = -tt3alc°2tO/txx = 0, i.e. tO = 0 defines an invariant manifold of system (5.7) without 
additional restrictions on the parameters. 

We finally conclude that the set specified by the condition A = 0 contains an invariant manifold 
common to the b~;e systems (5.6) and (5.7), under the following conditions 

(l)t~ l= t~  2 = 0 ( 1  23)  

(2) cq = 0, a~ = 0 (l 2 3) (5.12) 

(3) alo~ - aatx~ = 0 (1 2 3 ) 

We indicate the solution of system (5.5) for each of the cases (5.12) 

(1) V=co~, W=co2 (G=O,L~j=O) 

(2) V= o h,  W = 0  (G=0,~, i j  =0)  

(3) V = t~o~ 3 - ct~0h, W = 0 

(G = 0, ~'0 = 0, except for L2~ = - o~3a~o~2/oq) 

Thus, if the parameters of system (5.1) do not satisfy conditions (5.12), then the conditions of Theorem 
3 are satisfied by ,.~jstem (5.1), and so the latter is controllable. Moreover, by Theorem 5 it is also 
stabilizable. When conditions (5.12) are satisfied system (5.1) is non-controllable. 

Note that the oantrollability of system (5.1) has been previously considered [2, 6, 7] in a similar 
formulation, and that the case of dynamical symmetry of the rigid body was excluded in [6] because it 
required special considerations. In this paper that case has not been excluded and has been analysed 
in the same way as for an asymmetric rigid body. 
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